Probabilistic Graphical Models

Lectures 11

Conditional Random Fields

- System variables X_1, X_2, \dots, X_N
- Generative Model: Joint distribution $p(x_1, x_2, ..., x_N)$
- If you have the joint distribution, you have everything

• Prediction:

• Having p(x,y,z) = Pr(X=x, Y=y, Z=z), predict x,y,z

- System variables X_1, X_2, \dots, X_N
- Generative Model: Joint distribution $p(x_1, x_2, ..., x_N)$
- If you have the joint distribution, you have everything
- Prediction:
 - Having p(x,y,z) = Pr(X=x, Y=y, Z=z), predict x,y,z
 - Find the most likely configuration of system variables

- System variables X_1, X_2, \dots, X_N
- Generative Model: Joint distribution $p(x_1, x_2, ..., x_N)$
- If you have the joint distribution, you have everything
- Prediction:
 - Having p(x,y,z) = Pr(X=x, Y=y, Z=z), predict x,y,z
 - Find the most likely configuration of system variables

$$x^*,y^*,z^* = rg\max_{x,y,z} p(x,y,z)$$

- System variables X_1, X_2, \dots, X_N
- Generative Model: Joint distribution $p(x_1, x_2, ..., x_N)$
- If you have the joint distribution, you have everything
- Prediction:
 - Having p(x,y,z) = Pr(X=x, Y=y, Z=z)
 - If we know $Z = z_0$, predict x,y

- System variables X_1, X_2, \dots, X_N
- Generative Model: Joint distribution $p(x_1, x_2, ..., x_N)$
- If you have the joint distribution, you have everything
- Prediction:
 - Having p(x,y,z) = Pr(X=x, Y=y, Z=z)
 - If we know $Z = z_0$, predict x,y

$$x,y = rg\max_{x,y} p(x,y,z_0)$$

Generative Models

Generative Models

Generative Model P(X1, X2, ..., Xn) joint distribution feature vetor observation lakel target $X = (X_1 - X_n)$ Y= {Y1 - Ym } Generative model = P(X1-Xn, Ti-Mn) $MRF_{Case} P(X, r) = \frac{1}{2} \prod_{(c,c')} \varphi(X_c, r_{c'})$

Generative vs Discriminative Models

Discriminative model (Conditional model)

$$P(Y|X) = P(Y_1 - Y_m | X_1 - X_n)$$

Generative $P(X,Y)$
Discriminative $P(Y|X) = \frac{P(Y_1,X)}{P(X)} = \frac{P(X,Y)}{P(X)}$
 $P(X,Y) \Rightarrow P(Y|X)$
 $P(Y|X) \Rightarrow P(Y|X)$
 $P(Y|X) \Rightarrow P(Y|X)$
 $P(X,Y) = P(Y|X) P(X)$
 $P(X,Y) = P(Y|X) P(X)$
 $P(X,Y) = P(Y|X) P(X)$

Conditional Random Fields

$$MRF
P(X, Y) = P(X_1 - X_m, Y_1 - Y_n) = \frac{1}{2} T \Phi(X_c, Y_{c'})
(c,c) \in C
Z = Z = T \Phi(X_c, Y_{c'})
Y = T \Phi(X_c, Y_{c'})
Conditional Random Field (CRF)
R(Y|X) = \frac{1}{Z(X)} T \Phi_{c,c'}(X_c, Y_{c'})
Z(X) = Z T \Phi_{c,c'}(X_c, Y_{c'}) = Z P(Y|X) = 1
Y = Y (C,c') \in C
Consol thing X is constant at left the theory of theory of the theory of the theory of the theory of the theory of theory of$$

Example

Example - Image Segmentation

https://sites.google.com/site/highwaydrivingdataset

Example - Image Denoising

create CRF Model (
$$E_i(X_i) = ?$$
, $E_{ij}(X_i, X_j) = ?$)
 $E_i(X_i) = 1$ noise is (mosthy) small, $X_i \simeq T_i$ in most
 $E_i(X_i) = 2$ & (i,j) $\in E$ X_i, X_j are usually close cases
 $E_i(X_i) = [X_i - T_i]$ $X_i \in \{0, 1, 2, -, 256\}$
 $E_{ij}(X_i, X_j) = \lambda [X_i - X_j]$ $\lambda \to \infty$ X unithin
 $E_{ij}(X_i, X_j) = \lambda [X_i - X_j]$ $\lambda \to \infty$ X unithin
 $E_{ij}(X_i, X_j) = \sum_i [X_i - T_i] + \lambda \sum_{(i,j) \in E} [X_i - X_j]$ $\lambda \to \infty$ X unithin
 $E_{ij}(X_i, X_j) = \sum_i [X_i - T_i] + \lambda \sum_{(i,j) \in E} [X_i - X_j]$

Egy (Xi, Xj) forces Xi & Xj to be close. (I) Metric $d(X,Y) \ge 0$ $d(X,Y) = 0 \iff X = Y$ semi-metric d(X,Y) = d(Y,X) d(X,Z) = d(Y,X) + d(Y,Z) + AEig (Xi, Xj) metric or esomethy similar to a metric. Example Potts Model Eng E(Xi, X;) = 1(Xi = X;) $E(X_{1}, X_{j}) = |X_{1} - X_{j}|$

X: X;
III
at edges X: might be quite different from X;
after some point do not penalize
$$|X_i - X_j|$$

1 suse a tructocated Metric
 $X_i - X_j$
 $X_i - X_j$

$$f_{i} = [I_{i} - X_{i}] \quad good \quad for \quad g \quad Gaussian \\ f_{i} = [I_{i} - X_{i}] \quad good \quad for \quad g \quad Gaussian \\ noise \\ f_{i} = min(T, |T_{i} - X_{i}|) \\ f_{i} = Min(T, |T_{i} - X_{i}|)$$

https://www.researchgate.net/publication/326505595 Semi-Dense 3D Reconstruction with a Stereo Event Camera

left image

right image

depth map OR disparity map

. N. Toos niversity of Technolog

K. N. Toosi University of Technology

K. N. Toos University of Technology

K. N. Toos University of Technology

K. N. Toos University of Technology

